André AUBRÉVILLE¹ Translation by Ilona Bossanyi²

¹Inspector-General for Water and Forests in Overseas France

² Bois et Forêts des Tropiques

Translation French to English from the original article published the issue n° 2 of the *Journal Bois et Forêts des Tropiques*, second quarter 1947.

Secondary Forests in Equatorial Africa

Côte d'Ivoire - Cameroon - F. E. A.

Photo 1. Forêt secondaire de la Nkoulounga au Gabon en 1958. Photograph P. Sarlin, CTFT-CIRAD 1958.

RÉSUMÉ

LES BROUSSES SECONDAIRES EN AFRIQUE ÉQUATORIALE

La « brousse secondaire » s'oppose à la « forêt primaire », forêt « noble » aux grands arbres. C'est une forêt exubérante, inextricable, avec plus de lianes et de petits bois que d'arbres, succédant à l'agriculture sur brûlis. Dans les régions habitées, elle entoure communément les villages et borde les routes, la forêt primaire étant reléguée aux collines rocheuses et marécages. En Afrique équatoriale, la « brousse secondaire » représente actuellement 50 à 75 % des surfaces forestières. La formation des brousses secondaires procède en trois phases : (i) l'apparition de semis d'espèces héliophiles (Musanga sp., Vernonia sp., Anthocleista sp.) à croissance rapide, qui diffèrent des espèces de « forêt primaire » et dont les graines sont dispersées sur de longues distances ; (ii) la formation d'un sous-bois, constitué cette fois des mêmes espèces arbustives qu'en « forêt primaire », et où se mêle un second groupe d'espèces héliophiles banales, caractéristiques de la « brousse secondaire » et rattrapant le précédent, voire le surcimant ; (iii) la lente reconstitution de la « forêt primaire », riche en sapotacées, guttifères et légumineuses au bois dur, capables de se régénérer dans les sous-bois, et parmi lesquelles de très grands arbres finissent par percer la voûte des cimes. L'Okoumé (Aucoumea klaineana), essence précieuse typique des « brousses secondaires », est ainsi fréquent dans les prétendues « forêts primaires » du Gabon, forêts qui ont été en réalité autrefois défrichées. On ne saurait admettre aujourd'hui que le fort potentiel des « brousses secondaires » soit invariablement réduit en cendres. Il faut au contraire apprendre à guider et hâter leur évolution en faveur d'espaces à haute valeur économique.

Résumé adapté par la rédaction de la revue.

Mots-clés : Aucoumea klaineana, Musanga sp., dynamique forestière, espèce héliophile, groupes fonctionnels, forêt primaire, forêt secondaire, Gabon.

ABSTRACT

SECONDARY FORESTS IN EQUATORIAL AFRICA

"Secondary" forests are very different to "primary", "noble" forests with their tall trees. Their exuberant, inextricable vegetation, with more lianas and small shrubs than trees, grows on formerly forested lands cleared for agriculture. In inhabited regions, they generally surround villages and grow along roadsides, pushing the primary forest back to rocky hillsides and swamps. In Equatorial Africa, "secondary" forests account today for 50 to 75% of all forested areas. These forests form in three stages: (i) seedlings appear of fast-growing sun-loving species (Musanga sp., Vernonia sp., Anthocleista sp.), which are not the same as primary forest species and which disperse their seeds over long distances: (ii) formation of an understorey, made up of the same shrub species as in "primary" forests but mixed in this case with a second group of banal sun-loving species characteristic of "secondary" forests, which quickly grow as high as the first group and sometimes higher; (iii) gradual reconstitution of "primary" forest with abundant Sapotaceae, Guttiferae and hard-wooded legu-minous species that are capable of regenerating in the undergrowth and through which some very tall trees eventually grow through the canopy. Okoumé (Aucoumea klaineana), a valuable species typical of "secondary" forests, is common in the socalled "primary" forests of Gabon, which in fact are on formerly cleared forest land. Today, the high potential of these "secondary" forests must not be allowed to "go up in smoke". Quite the reverse: we must learn to guide their development to hasten the establishment of commercially valuable species.

Abstract adapted by the editorial team.

Keywords: Aucoumea klaineana, Musanga sp., forest dynamics, heliophilous species, functional groups, primary forest, secondary forest, Gabon.

André Aubréville

RESUMEN

LOS MATORRALES SECUNDARIOS EN ÁFRICA ECUATORIAL

El "matorral secundario" se opone al "bosque primario", el bosque "noble" con árboles de gran porte. Es un bosque exuberante e intrincado, con más lianas y monte baio que árboles y que sucede a la agricultura de roza y quema. En las regiones habitadas, estas áreas boscosas suelen estar alrededor de los pueblos y a lo largo de los caminos, mientras que el bosque primario se ve relegado a colinas rocosas y esteros. En África ecuatorial, el "matorral secundario" ocupa actualmente del 50 al 75% de las áreas forestales. La formación de estos matorrales se realiza en tres fases: a) aparición de pimpollos de especies heliófilas (Musanga sp., Vernonia sp., Anthocleista sp.) de crecimiento rápido diferentes de las especies del "bosque primario" y cuyas semillas se dispersan en amplias distancias; 2) formación de un sotobosque, compuesto ahora por las mismas especies arbustivas que el "bosque primario" y en el que se mezcla un segundo grupo de especies heliófilas comunes, típicas del "matorral secundario", que acaban alcanzando e incluso superando en altura al grupo anterior; 3) lenta reconstitución del "bosque primario", con abundancia de sapotáceas, gutíferas y fabáceas de madera dura, capaces de regenerarse en el sotobosque y que producirán árboles de gran porte que acabarán perforando el dosel. El okumé (Aucoumea klaineana), valiosa especie típica de los "matorrales secundarios", está muy presente en los supuestos "bosques primarios" de Gabón; unos bosques que, en realidad, fueron en su día desbrozados. No podemos permitir actualmente que el importante potencial de los "matorrales secundarios" acabe siempre reducido en cenizas. Se debe, por el contrario, guiar y acelerar su evolución creando bosques de gran valor económico.

Resumen adaptado por la redacción de la revista.

Palabras clave: Aucoumea klaineana, Musanga sp., dinámica forestal, especie heliófila, bosque primario, bosque secundario, grupos funcionales, Gabón.

All those living in equatorial forest regions in the colonies have become familiar with the term "secondary forests", which are visibly distinct from "primary forests", those noble forests that stir the imagination with their mysterious shadows, their cathedral-like architecture, the impressive size of their giant trees and their vast extent across the equatorial regions where Pygmies formerly roamed and are now the domain of loggers in search of african mahogany and other fine timber for cabinet-making. Instead of giant trees. these luxuriant secondary forests abound with lianas, foliage, woody vines and herbaceous stems, and trees are no more than 20 to 25 m in height: these are the forests that uniformly line the roads and tracks that criss-cross our forest colonies and mask the true rainforest, and more or less densely surround the villages depending on how long they have been established: in regions that have long been inhabited by a relatively dense and stable population, they have entirely replaced the old-growth forests, fragments of which sometimes remain on rocky outcrops or in swampy valleys. Vast tracts of old-growth forest nevertheless remain in uninhabited regions, but for how long? This is hard to say, given the absence of maps, but the frenzied clearing by native populations of ancient and magnificent stands along newly opened roads, sometimes on slopes so steep one can barely walk upright, suggests that their years are numbered, except where the forestry services are taking measures to conserve them. When attempts are made to estimate the proportion of secondary forests in a colony, the usual figure ranges from 50 to 75%. A recent estimation made in Cameroon by M. Grandclément, the head of the forestry service for that country, gives the following in the table I.

These secondary forests therefore cover very large areas. They are made up of small trees with soft timber, which are specific species not usually found in primary forests, whose trees, in contrast, mainly grow tall and produce hard or very hard timber. These two types of forest, with their two types of flora, are contiguous and sometimes inextricably meshed together, but they are different nevertheless. Until today, these lower-growing secondary forests have attracted little attention, being considered as forest waste, offering no usable timber; foresters scorned such plebeian vegetation, giving all their attention to the lords of the forest, those great trees producing giant logs, fine timber and large tonnages

Table I.

Recent estimation, of croplands versus forests, made in Cameroon by M. Grandclément, the head of the forestry service for that country, gives the following.

	Area	Croplands/ Forests
Crops and palm plantations	2,830,000 ha	approx. 54%
Secondary forest	5,750,000 ha	
Primary forest	7,300,000 ha	
Mangroves	60,000 ha	approx. 46%
TOTAL	15,940,000 ha	

for export. Yet if we look beyond the conventional merchant's view of high quality wood produced by classic timber trees, we will see that some secondary forest species, which may be mediocre as trees but are fast-growing, could become outstanding sources of cellulose that can be easily felled and used for new colonial industries, fibres, paper pulp, and other purposes. Secondary forests could therefore be of considerable interest for the future.

What assessment can be made of their current and potential value?

For those who are unfamiliar with the equatorial regions, it is hard to imagine the aspect of these forests, their structure, their composition and how they evolve. This article has therefore been written for those who have never visited a tropical country, and who therefore cannot have an accurate picture of these banal forest formations. France also has secondary forests, formed by the untidy regrowth that quickly appears after felling, but because it is temporary and not extensive, nobody has thought to refer to it as "secondary forest". In equatorial countries, they are indeed forests, of low height but so dense that, when the regrowth is recent, the only means of access is by wielding a machete to slash a narrow passage through the impenetrable tangle of stems, lianas, spiny palms and giant monocotyledons.

As we know, this secondary growth appears wherever a clearing has been made in the uninterrupted blanket of forest, which, we remind our readers, every native farmer must do to expose his subsistence crops to the sunlight. Farmers cut down the trees and burn them during the dry season. This is a very rudimentary method of cultivation because, after cutting, burning and spreading the wood ash, the native farmer merely places cuttings and seeds directly into the ground without ploughing, in between fallen and partly burned tree trunks and large branches.

After one or two harvests, the farmer considers that the soil is exhausted, abandons the land and moves on to make another clearing in the forest. The abandoned plot is soon covered with an exuberant tangle of shoots, lianas, herbaceous plants and tree seedlings, which grow extremely quickly. As the plants for the sunlight, they become tangled together, suffocate, grow ever upwards until a layer of brush several metres in height completely covers the former clearing and the partly burned stumps and stems that slowly decompose and re-form a layer of humus.

Usually, after leaving the ground fallow for some time, often about ten years, the native farmer returns to the initial plot, where the layer of humus has reformed and where there will be enough ash after burning the regrowth to make it possible to harvest a new crop.

This, then, is the well-known origin of these expanses of secondary forest, which have become so extensive because forest-dwelling populations have been slashing and burning in this way since cultivation began.

Because they are so common but have so far been devoid of any commercially exploitable resources, few studies have been made on secondary forests. In order to provide some knowledge of their structure through descriptive drawings supplemented with information from botanical surveys, we used a method of sampling based on exhaustive inventories

of narrow strips of forest, with which profiles can be easily established. The method can be quickly and simply applied elsewhere to compare the results in different types of forest where it would be materially difficult to undertake repeated counts over large areas. The method involves marking off a narrow strip 50 m in length and 45 m in width, divided into squares of 4 x 4 metres or 5 x 5 metres. In each square, the position, height and diameter of each woody plant more than 1 m in height is noted, along with a sketch of any tree or bush with a particular conformation. Once they have been measured, each tree and bush is felled in such a way that the standing trees that remain are entirely visible in the area of forest that has been cleared. The secondary formations are thus measured and felled, plot by plot. The smaller-diameter trunks are then sawn and stacked, and the larger trunks simply assessed for cubic volume. With this information, it is a relatively simple matter to set down on paper the profile of the forest at the chosen spot, and to make an approximation of the standing timber volume from the results of several such operations.

Below are given the inventories and documentation from five such surveys made in Gabon, in secondary forests of varying age, from young 2 to 3 year-old formations to very old secondary forests that have grown to closely resemble a primary forest. The first three were undertaken in the listed forest of La Mondah, located about 30 km to the west of Libreville on the road to Cape Esterias. The fourth was conducted in a secondary forest two and a half years of age that appeared to contain a great many young umbrella trees, near the Foulenzen logging concession obtained by the French rail network consortium in the southern part of the Gabon estuary.

The fifth survey, in a very old secondary forest, was conducted on the edge of the Kango experimental rubber plantation, beyond the eastern extremity of the Gabon estuary on the road to Njolé.

In Côte d'Ivoire, four surveys were made in the listed forests of Mamba and Yapo, between Abidjan and Agboville. With these few examples, we believe we can provide a fairly accurate picture of these bewildering secondary forests.

Origin: First Phase

If we observe how forest vegetation becomes re-established or in soils where indigenous slashing and burning has taken place, with incineration of the vegetation, we notice first of all, that a great many seedlings become established. Many belong to species different to those of the initial stand and some are not even present in the immediate vicinity of the plot under observation. These species are truly characteristic of secondary forests. The most outstanding, by far, is the umbrella tree (*Musanga cecropioides*), which takes its name from the umbrella shape of its delicate of large fanshaped leaves. All colonials know that after simply exposing the ground in the middle of a forest to sunlight, for example when building a road or establishing a plantation, young umbrella trees will appear within a few months, often in dense clumps, even when there are no seed-bearing umbrella trees in the vicinity. Thus, in former clearings, umbrella tree saplings become established, first as polewood thickets and eventually forming the umbrella tree clumps that are so common in African forests. The stems are sometimes very close together. In the Téké primary forest along the Abidjan-Agboville railway, which was clear-felled to provide firewood for the engines, the rulebook required the felled areas to be replanted with Azobé (*Lophira procera*), an excellent source of firewood for railway engines. Across the entire felled area, the regenerating umbrella trees quickly became so dense that the Azobé saplings died off beneath them.

The sudden proliferation of umbrella trees in primary forests where none existed before is a surprising phenomenon. After again noting the abundance of umbrella tree growth along a recently opened forest road in the Mamba forest, we commissioned the Côte d'Ivoire Water and Forests Service to extract the surface soil (to 5 cm in depth) from a 2x2 metre square, marked off under intact forest about 25 metres from the road. Sorting out the parasol seeds was not easy because of their small size, but 498 of them were collected from the soil sample. This provided proof that their seemingly miraculous regeneration originated from numerous seeds that were already present in the soil, remaining dormant until the warmth of the sun penetrating into the clearing triggered their germination. The tiny seeds of the umbrella tree usually do not readily germinate as they are protected by a relatively thick shell, which, on the other hand, endows the dormant seeds with great longevity.

Other seeds also germinate on the newly bare soil, brought by the small animals, birds and insects that are often attracted to sunlit clearings.

A great many seedlings of lianas and herbaceous, bushy and woody species thus appear. A distinction must be made between them: some, like the umbrella tree, are sun-loving species, small trees that belong to the primary forest environment; others are lianas, also sun-loving, which immediately twine around any nearby stems; a third group, finally, is made up of primary forest species, especially woody undergrowth, but also large tree species.

Finally, in amongst these numerous seedlings, shoots will also appear from the stumps of small or average sized trees. Trees in primary forests do not usually shoot from the stump, but some young trees and some shrubby species are the exception to the rule.

The hierarchy between all these growing stems soon becomes apparent. Stump shoots, lianas and sun-loving secondary forest species quickly begin to shade out the seedlings of species normally found in primary forests, which grow much more slowly. From the outside, secondary forests seem fairly uniform, as only the dominant species that emerge from the rest are visible, in other words, the small number of species characteristic of secondary forest. However, a whole complex community of slower-growing shade-tolerant species develops beneath them.

Within about 10 years, the sun-loving species typical of secondary forests rapidly grow to their maximum height of 15 to 20 metres, and sometimes more: this may be considered as the final stage in the first phase.

Second phase

An understory made up of the same shrubby species as in primary forests has now formed. The tree species characterising the first phase have remained after reaching their maximum height. A second group of sun-loving species, often more slow-growing with soft or semi-hard wood, has caught up with the first group and is tending to grow taller, with dominant crowns: these are large trees that will go to 30 or 40 metres in height or more. They are also secondary forest species characterised by their frequency in these environments and, conversely, their increasing rarity in primary forest, and by their sun-loving temperament and rapid growth.

Reconstitution of primary forest

In this, the third phase, the character of the forest again begins to change. The secondary species from the first phase have long disappeared; those from the second phase have reached maturity and are now large trees. In the understory, other species are patiently growing, slowly but steadily. Amongst these are many sapotaceae, guttiferae and leguminous species with hard or very hard wood. Once they manage to grow through the canopy above them, they revert to their natural place at the top of the stand's hierarchy. These are often very tall trees typical of primary forests, which are in harmony with the environment as a whole. They probably live longer than those that previously made up the upper story; they are capable of regenerating in the understory. which sun-loving species cannot do. As time is on their side, they will inevitably keep their place in the sun, where they will remain forever as long as humans do not intervene, because, as their seeds are often heavy, they regenerate in situ, unlike many sun-loving species whose winged seeds disperse far away from the parent trees and can therefore only multiply from the parent if they fall by chance in a sufficiently sunlit spot.

Their development thus comes full circle, but this does not always happen. Most often, it is interrupted before the final phase. These secondary forests are forest fallows that people return to cultivate within variable period, usually 10 to 15 years, and sometimes only a few years in regions with a relatively large population. The survivors from the old-growth forest then tend to disappear, remaining only as isolated trees in crop fields, because their wood is too hard, because they are too large or because their high crowns are light enough not to shade out the crops below, or as thickets on soils that are hard to cultivate. Eventually, secondary forests will thus lose the latent components that could reconstitute a primary forest; because they are periodically cultivated and the rotations are too short, these species can no longer develop. This is why entire regions are now uniformly covered in this dull vegetation. Many different degrees of retrograding plant cover can be observed: from vegetation that still seems luxuriant to low, stunted growth invaded by herbaceous plants, on the edges of equatorial forests, adjacent to savannah land, and in regions where the dry season is quite long and they are liable to be directly destroyed by fires propagating from nearby savannah. This phase is the beginning of the end for forest cover of this kind.

Composition

The results of the surveys we have mentioned in this note show that the composition of secondary forests is still very heterogeneous. In each of the small 400 to 500 square metres parcels, 19 to 39 different species were counted, or twenty-nine on average. It should be noted that, in theory, the counts included all woody vegetation more than 1 m in height.

The vegetation is as heterogeneous as any that might be surveyed in a primary forest. It must be remembered that these secondary formations include true secondary sunloving species on the one hand, and remnants of cleared primary forests on the other hand, growing as stump shoots, saplings or trees that have not been felled. We did not make any surveys in exhausted secondary forests where no oldgrowth species are found at all. When the normal habitat of all forest species is known, it is fairly easy to distinguish several groups. We observe, first of all, that a small number are significantly larger in size than all of the others. These are, on the one hand, the most fast-growing species that are characteristic of secondary forests, generally dominated by umbrella trees, and will determine their shape for many years; and on the other hand, a few trees from the cleared forest that have been conserved by native farmers will suddenly begin to grow rapidly once the sun reaches them: these will be found at a later stage among the high stands of the second phase, and perhaps also in the reconstituted primary forest.

Finally, the many species forming the understory include numerous shrubby trees from the cleared forest undergrowth and some young specimens of large tree species. The latter, after a period of slow growth, will eventually grow taller than the sun-loving species that currently shade them out to form the high stands of the second phase.

Thus, only a few years after the formation of secondary forest cover, the trees that will eventually form a new primary forest can already be found, provided they are given time to grow. In the lists below, all the species that may become high forest trees in the second phase are shown in bold.

This experience has enabled us to draw up lists of the secondary forest species that become established in the first and second phases, in Côte d'Ivoire, in Gabon and, in part, in the Brazzaville region (tables II).

Although incomplete, these lists are still rather long: indeed, secondary forests over a whole colony are much more complex than they appear in a single locality. But in general, these forests seem fairly uniform: the same species are found everywhere. There is an apparent anomaly here that needs an explanation. The main species in the second phase are undeniably banal and widespread over large areas; they are found for example in Côte d'Ivoire, Gabon, the Congo, Uganda and Angola. The range of distribution of

Tables II.

26

This experience has enabled us to draw up lists of the secondary forest species that become established in the first and second phases, in Côte d'Ivoire, in Gabon and, in part, in the Brazzaville region.

In the lists below, all the species that may become high forest trees in the second phase are shown in bold.

COTE D'IVOIRE FIRST PHASE PIONEER SPECIES			
Ivorian vernacular name	Scientific taxonomy		
Parasolier	Musanga cecropioides R . Br.		
Ouologbaoué	<i>Tetrorchidium didymostemon</i> (Baill.) Pax & K. Hoff.		
Ouombé	<i>Harungana madagascariensis</i> Lam. ex Poir.		
Adaschia	Trema orientalis (L.) Blume		
Tofé	Macaranga barteri Müll. Arg., M. spinosa Müll. Arg., M. hurifolia Beille		
Brobro	Anthocleista nobilis G. Don		
Akoré	Discoglypremna caloneura (Pax) Prain		
Eho	Ricinodendron africanum Müll. Arg.		
Oualélé	<i>Pycnanthus angolensis</i> (Welw.) Warb.		
Bangbaye	<i>Albizia gummifera</i> (J. F. Gmel.) C. A. Sm.		
Ouochi	<i>Albizia zygia</i> (DC.) J. F. Macbr.		
Framiré	<i>Terminalia ivorensis</i> A. Chev.		
Fromager	Ceiba pentandra (L.) Gaertn.		
Tekbé	<i>Psydrax subcordata</i> (DC.) Bridson var. subcordata		
Poupouia	<i>Monosis conferta</i> (Benth.) C. Jeffrey		
Bahé	Fagara macrophylla (Oliv.) Engl.		
Sobou	<i>Cleistopholis patens</i> (Benth.) Engl. & Diels		

Aiélé	Canarium schweinfurthii Engl.
Iroko	<i>Milicia excelsa</i> (Welw.) C. C. Berg
Effeu	Hannoa klaineana Pierre ex Engl.
Loloti	Lannea welwitschii (Hiern) Engl.
Dédé	Ficus exasperata Vahl
Doumbourou	Ficus mucuso Welw. ex Ficalho
Ndechavi	Rauvolfia vomitoria Afzel.
Tchikué	Bridelia micrantha (Hochst.) Baill. (Hochst.) Baill.
Blébendou	<i>Treculia africana</i> Decne.
Wounian	<i>Myrianthus arboreus</i> P. Beauv. <i>Ficus vogeliana</i> (Miq.) Miq.
Poro	Ficus sur Forssk. Cnestis ferruginea DC.
Pétépré	<i>Calpocalyx brevibracteatus</i> Harms (also in primary forest undergrowth, especially humid ground)
Poto	Dichaetanthera africana (Hook. F.) JacqFél.
Aplati	Gaertnera paniculata Benth. Pleioceras barteri Baill. Holarrhena floribunda (G. Don) T. Durand & Schinz Holarrhena floribunda (G. Don) T. Durand & Schinz Vitex grandifolia Gürke
Alambi	Premna hispida Benth.
Balié	<i>Newbouldia laevis</i> (P. Beauv.) Seem. ex Bureau
Aboké	<i>Randia acuminate</i> (G. Don) Benth. (also in primary forest under- growth, especially humid or swampy ground)

Aplati	Psychotria venosa (Hiern) E.M.A. Petit Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. Mallotus oppositifolius (Geiseler) Müll. Arg.
Mingki	Zanthoxylum parvifoliolum (A. Chev. Ex Keay) W.D. Hawth.
Baingou	Harrisonia abyssinica Oliv.
Banaye	<i>Trichilia monadelpha</i> (Thonn.) J. J. de Wilde
Ouangran	Allophylus africanus P. Beauv.
Ouomobéhiapi	<i>Vismia guinensis</i> (L.) Choisy

COTE D'IVOIRE SECOND PHASE OLD SECONDARY FOREST

Ivorian vernacular name	Scientific taxonomy
Oualélé	<i>Pycnanthus angolensis</i> (Welw.) Warb.
Fromager	<i>Ceiba pentandra</i> (L.) Gaertn.
Framiré	Terminalia ivorensis A. Chev.
Fraké	<i>Terminalia superba</i> Engl. & Diels.
Samba	<i>Triplochiton scleroxylon</i> K. Schum.
Acajou	<i>Khaya ivorensis</i> A. Chev.
Loloti	Canarium schweinfurthii Engl.
Oussoupalié	Erythrina milbraedii Harms
Méléfoufou	<i>Homalium letestui</i> Pellegr.
Bon	<i>Cordia platythryrsa</i> Baker
Tulipier du Gabon	Spathodea campanulata P. Beauv.
Lié	<i>Phyllanthus discoideus</i> (Baill.) Müll. Arg.

Blénodiro	<i>Pierreodendron kerstingii</i> (Engl.) Little			
Aiélé/Ayous	Canarium schweinfurthii Engl.			
Aribanda	<i>Trichilia tessmannii</i> Harms			
Blékoré	Pseudospondias microcarpa (A. Rich.) Engl.			
Monbin	Spondias mombin L.			
Poré-Poré	Sterculia tragacantha Lindl.			
Iroko	<i>Milicia excelsa</i> (Welw.) C. C. Berg			
GABON (estuary region) FIRST PHASE PIONEER SPECIES				
Gabonian vernacular name	Scientific taxonomy			
Parasolier	Musanga cecropioides Tedlie			
Esoma	Rauvolfia macrophylla			
Ahinébé	Anthocleista nobilis G. Don			
Essessang	Ricinodendron africanum Müll. Arg.			
Atsu	<i>Harungana madagascariensis</i> Lam. ex Poir.			
Nkabi	Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg.			
Okala	<i>Xylopia aethiopica</i> (Dunal) A. Rich.			
Evegeu	Trema orientalis (L.) Blume			
Séneu	<i>Albizia gummifera</i> (J. F. Gmel.) C. A. Sm.			
Kanguélé	<i>Maesopsis eminii</i> Engl.			
Ngourangouran	Oncoba glauca (P. Beauv.) Planch.			
Okoumé	Aucoumea klaineana Pierre			

Akol	<i>Ficus exasperata</i> Vahl		
Ezelfou	Sterculia tragacantha Lindl.		
Medzimékourou	<i>Psychotria venosa</i> (Hiern) E.M.A. Petit		
Assas	<i>Bridelia micrantha</i> (Hochst.) Baill. (Hochst.) Baill.		
Avomé	<i>Cleistopholis patens</i> (Benth.) Engl. & Diels.		
Nvouma	<i>Xylopia quintasii</i> Engl. & Diels. (humid ground)		
Ovala	Pentaclethra macrophylla Benth.		
Tol	Ficus vogeliana (Miq.) Miq.		
Olon, Olonvogo	Fagara macrophylla (Oliv.) Engl.		
Iroko, Abang	Milicia excelsa (Welw.) C. C. Berg		
Mississé	<i>Calpocalyx klainei</i> Pierre ex Harms		
Fira	Calpocalyx dinklagei Harms		
Nsa	<i>Maprounea membranacea</i> Pax & K. Offm.		
Akana	Dichostemma glaucescens Pierre		
Vakfiné	<i>Diospyros</i> sp.		
Keyio	Trichoscypha sp.		
Atégué	Discoglypremna caloneura (Pax) Prain Monosis conferta (Benth.) C. Jeffrey Polyscias letestui Norman (Mbigou range around 1000 m asl)		
Noumasas	various Macaranga (gabonica, Gilletii, le tchibangensis, Testui, monandra)		
Essan	<i>Dichaetanthera africana</i> (Hook. F.) JacqFél. <i>Newbouldia laevis</i> (P. Beauv.) Seem. ex Bureau <i>Croton oligandrus</i> Pierre ex Hutch.		

GABON (Estuary region) SECOND PHASE OLD SECONDARY FOREST

Ivorian vernacular name	Scientific taxonomy		
Ilomba	Pycnanthus angolensis (Welw.) Warb.		
Soro, Ossoko	<i>Scyphocephalium mannii</i> (Benth.) Warb.		
Niové	<i>Staudtia kamerunensis</i> var. gabonensis (Warb.) Fouilloy		
Ekoune	Coelocaryon preussii Warb.		
Aiélé, Abeule	Canarium schweinfurthii Engl.		
Pindja, Mvana	Hylodendron gabunense Taub.		
Ozigo, Assia	Pachylobus buettneri (Engl.) H.J. Lam		
Onzabili	Antrocaryon klaineanum Pierre		
Ebais	Cordia platythyrsa Baker		
Nkouarsa	<i>Tetrapleura tetraptera</i> (Schumach.) Taub.		
Movingui	Distemonanthus benthamianus Baill.		
Lonlaviol	<i>Daniella</i> spp. especially riverbanks		
Andoum	?		
Bilinga, Aloma	Nauclea diderrichii (De Wild. & T. Durand) Merr. cool ground		
Acajou, Zmainguila	Khaya ivorensis A. Chev.		
Limbo	<i>Terminalia superba</i> Engl. & Diels.		
MIDDLE CONGO BRAZZAVILLE REGION			
lvorian vernacular name	Scientific taxonomy		
	<i>Sclerocrton cornutus</i> (Pax) Kruijt & Roebers		

lwitschii	the umbrella tree thus coinci dense humid forests across A madagascariensis and Trema
zavillensis mpère	Africa from Casamance to Magevenly distributed across the
a ulmoides Oliv.	many secondary forest specie distribution, which means th different localities and differ
	that secondary forest species might say associations – an gana, Anthocleista, Rieinode
<i>niculata</i> Benth.	coglypremna, etc. – in fact, m Chance alone will therefore
<i>ricanus</i> P. Beauv.	Umbrella trees, Anthocleista, ties in a forest clearing, giv within the overall range dis
arteri Müll. Arg.	depending on circumstance bearing trees that remain in
<i>difolia</i> Thonn.) Müll. Arg.	clearing, etc. The role of char to forecast, with any certaint that will replace a cleared fo
ntha(Hochst) Baill.	tion in the second phase. We ture of secondary species cl with no certainty as to the fre
<i>lis</i> (L.) Blume	In tropical forestry, there that does not exist, or much
adagascariensis	Plant cover in a cleared fore station to the next and can terms, based on qualitative ra
ngens Soler.,	tions made in the natural env is then cleared in turn, it will

Harungana madagascariensis Strychnos pungens Soler., S. variabilis De Wild. Pentaclethra eetveldeanna De Wild. & T. Durand

Caloncoba we

Vernonia braz.

Aubrév. Ex Cor

Hymenocardia

Gaertnera pan

Allyphyllus afr

Macaranga ba

Alchornea cord

(Schumach. &

Bridelia micrar

Trema orienta

Milleria L.

(Oliv.) Gilg

Platycalyx N. E. Br.

GABON LOWLA<u>ND REGION</u>

lvorian vernacular name	Scientific taxonomy
Pinédo	Chrysolbalanus ellipticus
Okoumé	Aucoumea klaineana Pierre
Oxouga	<i>Sacoglottis gabonensis</i> (Baill.) Urb.
Medzimékouro	<i>Psychotria articulate</i> (Hiern) E.M.A. Petit <i>Gaertnera paniculata</i> Benth. <i>Eugenia</i> sp.
Tomgouna	<i>Casearia</i> Jacq.

ides approximately with that of Africa as a whole, while Harunaa orientalis are found throughout adagascar. However, they are not hese vast areas; furthermore, es have a much smaller range of hat these forests vary in type in rent countries. It could be said s occur in communities – others round Musanga, Trema, Carunendron, Albizia, Macaranga, Disnost of the species listed above. e favour the establishment of . Vernonia and other communiven of course that it is located stribution of the species, and es: pre-existing seeds, seedn the immediate vicinity of the nce is such that it is impossible ty, the composition of the bush prest, and still less its composie know that there will be a mixharacteristic of the region, but equency of each one.

e is an element of uncertainty h less so, in temperate forests. est evolves differently from one n only be predicted in general ather than quantitative observavironment. If a secondary forest is then cleared in turn, it will not necessarily be replaced by the same species composition, unless all of the stumps produce shoots, which is by no means certain. Foresters have been surprised to observe that it is very difficult to regenerate a stand made up purely of Musanga, even though this species spontaneously and vigorously invades any clearing made in a primary forest. Every attempt up to now has partly or entirely failed: despite clearing the ground and preserving seed-bearing trees, there has been no significant regeneration, while coppicing attempts have not produced any satisfactory results: some of the stumps produce shoots, which are often fragile, while other stumps simply rot. The Musanga is a small tree growing from aerial roots; its shoots grow from dormant buds that form at the base of the trunk above the aerial roots 1, 2 or 3 metres above the soil and cannot form individuals with their own roots: they either reform the parent tree from its stump or disappear. Very little is known at present on the evolution of secondary forests or on the conditions their species need to regenerate: sylvicultural knowledge on these forests does not yet exist.

Origin of characteristic secondary forest species

Where do all these species come from, which are unknown in primary forests, yet have become so common and are steadily spreading further to the point that they

could one day replace the old-growth forest? Because, after all, before clearing began on such a large scale, at a time when Pygmies were perhaps the only human beings living in equatorial forests - and even before them - primary forests reigned supreme. The knowledge we have about the temperament of these secondary forest species, and the observations made in various undoubtedly primitive stations, since humans have not been able to modify them, indicate that they often originate in swampy areas and from riverbanks. Before humans arrived, they would only become established on recently dewatered alluvial soils, and along the edges of dense forest, where water and light were abundant. But if the soil dried out for any reason (changes in the relief, etc.), they would be suppressed by the primary forest species that could become established among them. This, in all likelihood, is where the origins of these characteristic secondary forest species may be found – those growing from aerial roots such as Musanga, Macaranga, Bridelia, Xylopia, Anthostema or Myrianthus, and all the other species growing on wet ground but without aerial roots, such as Cleistopholis or Trema, both much less widespread today: by clearing the forest, man himself opens up broad tracts of forest where they could not previously survive as normal plant communities.

The origins of other species are more hypothetical, because stations that are indisputably untouched by man and where they are certain to be found are very rare. Many species probably come from the undergrowth in high semi-dry stands, or from the high stands that previously marked the transition between humid equatorial forests and forests in regions with a long dry season. These are probably the sources of species such as *Anthocleistia*, *Fagara*, *Harungana*, *Trema*, *Phyllanthus*, *Vernonia*, *Albizia*, *Holarrhena*, *Allophyllus*, *Sterculia* and *Tragantha*. Finally, many probably descend from xerophyllous scrublands, low-growing sunlit formations forming on rocky ridges, and steep mountain slopes where they are still found today.

All the species inhabiting stations in full sunlight, all those capable of rapid growth and of producing and disseminating large quantities of seeds that germinate easily have multiplied in the artificial clearings made by man. This is the origin of the "pioneer" species in secondary forests. However, for many other species, of which we know too little, we cannot say at present what their original environment might have been among many possible candidates.

The origins of the high trees peopling older secondary forests are generally different. Many are capable of regenerating in primary forests, but not well, as there is not enough sunlight. Saplings that vegetate for some time in the undergrowth will begin to grow as soon as a natural clearing appears when a large tree dies or is felled by a strong wind or struck by lightning. These species therefore existed in oldgrowth forests, but were not as frequent as in today's forests that have developed from clearings. This is likely to be the case for all the species producing the finest trees and the best timber in these forests: (*Terminalia superba* and *T. ivorensis*), mahogany (*Khaya spp.*), which also originate from riverbanks and swamps, *Triphochiton scleroxylon, Pycnanthus*), Iroko (*Milicia*), and so on.

We have treated three outstanding trees as a special case: the Gaboon mahogany, kapok tree and oil palm (*Elaeis*

guineensis). All three have become widespread in today's African forest landscapes. Mahogany, the pride of Gabon, is often abundant in forests, but does not usually regenerate. It is a pioneer species in secondary forests, but unlike the umbrella tree and others, it is tall and long-lived. We have shown elsewhere that this species probably originated in the compacted, dried-out alluvial soils of Gabon's coastal lake and delta region, and became established in the country's humid forests thanks to man-made clearings.

The giant Kapok tree (*Ceiba pentandra*), a common species from the tropical Americas to Malaysia, probably did not originate in Africa but emigrated fairly recently, from the Americas according to some, or from Indo-Malaysia according to others. We do not have enough material to give an opinion on this subject, but it is certain that without forest clearing, the species would not be as widespread as it is today in Africa's forests.

Oil palm groves are very old secondary formations in which palm trees, first dispersed and now respected by native populations, became established. Some in Dahomey [Benin] and Togo are true plantations recently established by native farmers, mainly to harvest palm wine, but most are sub-spontaneous. Oil palms are not a primary forest species, although stunted specimens may be found that do not develop or reproduce. Their origin is certainly in Africa. The species undoubtedly grow spontaneously in swampy areas on dewatered soils where there is abundant light and water: this is probably its original habitat.

The economic value of secondary forests

All pioneer species are fast-growing with soft timber. They often reach a suitable felling diameter, usually 25 to 35 cm, within 10 to 15 years. They are therefore small trees that cannot be used for construction timber, which is why they have been ignored up to now, as loggers are only interested in large trees. When considered from the angle of cellulose production, however, they are clearly of particular interest for their yields in terms of annual woody growth and the relative ease of felling and processing. This is why, given the hopes held out for colonial forests by possibilities for establishing large-scale mechanical and chemical timber processing industries to manufacture cellulose pulp, fibre board, plastics, etc., the question of short-rotation felling of all secondary forests species has been raised. However, numerous objections immediately arise.

Young secondary forests produce fewer cubic metres of timber than might be thought on seeing their luxuriant vegetation. In fact, their lianas, foliage and vines form a mass of greenery that conceals their wood so that its quantities are over-estimated. The wood is also of highly variable quality, as our profiles show: these formations are very irregular, especially when they contain remnants of cleared forest, either in the undergrowth and particularly among high trees: some almost empty parcels contain large herbaceous monocotyledons 5 to 8 m in height (*Aframomum* in particular) and

an abundance of slender or knotty shrubs. Our production estimates vary from 55 to 750 stacked cubic metres per hectare. It is also difficult, and even impossible, when counting trees in these forests, to calculate average growth in volume with any certainty, because the age of the stands cannot be assessed. According to previous measurements made in Côte d'Ivoire in dense natural stands of umbrella trees, whose age was known within one two years, estimated volumes range from 200 to 250 m³ per hectare on average, when logs more than 5 cm in diameter are stacked, or 165 to 200 m³ when only logs more than 10 cm in diameter are considered usable.

These figures only concern pioneer species. If an older secondary forest is logged, they will obviously increase considerably. In young secondary forests, annual woody growth may be estimated at 14 to 17 stacked cubic metres of wood more than 10 cm in diameter, or 10 to 13 m³ per year. These figures for natural forests are certainly much lower than those one would obtain for a cultivated forest or plantation.

The irregularity in the qualitative and quantitative distribution of woody material in secondary forests is a considerable handicap when attempting to forecast production. If we disregard the remnants of the previously cleared forest to consider only true secondary species, these forests are still very heterogeneous in their composition.

Not enough surveys have been made to make it possible to determine, to an acceptable degree of approximation, the average composition of secondary forests in a given region. By increasing the number of surveys or tree counts, over areas of 1 ha for example, there is a obviously a much greater probability of reaching a close estimation of the real average, but it must be admitted that we do not know a great deal about the subject since no major study has been conducted to date.

It is nevertheless unfortunate to have to rely purely on the qualitative stability of secondary forests, in other words, to have no certainty, when logging a forest today, of finding the same composition 10 to 20 years later when felling is next planned. We discussed this problematical issue of forest reconstitution at some length in the paragraphs above. It is possible, for example, that large stands of Musanga will disappear in secondary forests that have been cultivated for many centuries. We will not venture to express a formal opinion on this point, but it is not improbable; we must await more thorough knowledge on the biology of the species to form a definitive opinion on the subject.

In short, the question of exploiting wild secondary forests involves a great deal of uncertainty as to their current and future potential.

It should be remembered, nevertheless, that the option of cellulose production exists for these forests. If it were possible to multiply the trees through simple and inexpensive processes, the solution we are seeking may well emerge from this approach. What are the species concerned? We have provided an indicative list based on our impressions, although it is neither exhaustive nor definitive. This list is based on the spontaneous frequency of the species in secondary forests, broad dissemination of the species, their apparently rapid growth and the technological value of the tree (height, diameter and habit).

The umbrella tree indisputably leads the field. No other species has such rapid growth, frequency or aptitude to form

pure stands. If the problem of natural propagation by preserving individuals during felling, coppicing or artificial seeding were resolved – and unfortunately, as we have said, it is not – our forest colonies would provide a source of cellulose of great interest.

We will now list all these species, which current knowledge does not permit us to rank in order of value (table III).

Need for methodological studies

With a very few exceptions, we have virtually no knowledge, if any, on secondary forests and their timber in terms of mechanical, chemical and technological properties. These formations need to be systematically studied from all these angles in order to determine their value for the manufacture of paper pulp, fibre board, hydrolysed glucose, etc.

Sylviculture in these forests also needs to be systematically researched. We have seen that easy natural regeneration does not necessarily mean easy artificial regeneration. It would be essential to investigate possibilities for abundant propagation of the species, to determine the growth rates of trees and stands and to measure their productivity by means other than observations in the wild on spontaneous vegetation, of which we know virtually nothing as regards circumstances and conditions. Experimental plantations should therefore be established. About 10 ha per species would suffice: given that trials are needed on some fifty species, this would require planting about 500 ha in each major forest colony. There is by no means a vast undertaking, but it is essential nevertheless: until such plantings are established and methodically followed up, doubts, illusions and lack of forethought will continue to be the norm.

Concerning propagation trials for umbrella trees, a methodology testing programme was set up in Côte d'Ivoire in 1941-42. This was followed up methodically despite the World War context by successive foresters working in the country. The results were negative on the whole, but the trials should be taken up again and pursued with much more perseverance, taking the lessons from the first attempts into consideration. It is inconceivable that we should fail to identify the conditions for spontaneous germination of the umbrella tree: a careful and observant experimenter needs only a lucky chance, but that chance will only arise through a series of experiments.

Finally, exotic species should not be ignored. Some are very fast-growing and produce more cellulose than local species. The scope of the trials can be productively expanded with innumerable species that include Gmelina, Macaranga, Ochroma, Virgilia, Styrax and many more.

Secondary forests in the second phase

The characteristics of species in these forests are as follows: they are sun-loving, or at least require generous light during their growth, regeneration is impossible or mediocre

Table III.

List all these species, which current knowledge does not permit us to rank in order of value.

Vernacular name	Scientific name	Particularities
The kapok tree	<i>Ceiba pentandra</i> (L.) Gaertn.	a very large fast-growing tree, easily propagated by seeding or cuttings, suitable for short rotations
Ouombé, Atsui	<i>Harungana madagascariensis</i> Lam. ex Poir.	provides straight poles, highly invasive
Adaschia, Evégeu	Trema orientalis (L.) Blume	appears to be much less frequent in Gabon than in Côte d'Ivoire
Kanguélé (g)	Maesopsis eminii Engl.	rare in Côte d'Ivoire, common in Gabon, grows to a fairly large size
Tofé, Noumasas	Macaranga spp.	numerous species of unequal value, choices to be made
Bangbaye, Séneu	Albizia gummifera (J. F. Gmel.) C. A. Sm.	appears to be more abundant in Côte d'Ivoire than in Gabon
Akoré, Atégué	Discoglypremna caloneura (Pax) Prain	frequent in Côte d'Ivoire especially
Poré-Poré, Ezelfou	<i>Sterculia tragacantha</i> Lindl.	
Brobo, Ahinébé	<i>Anthocleista nobilis</i> G. Don Vogelii	
Framiré (C. I.)	Terminalia ivorensis A. Chev.	found only in Côte d'Ivoire, tall, very rapidly growing tree, risk of serious insect attacks
Qualélé, llomba	Pycnanthus angolensis (Welw.) Warb.	mainly a second-phase species
Eho, Esessang	Ricinodendron africanum Müll. Arg.	very soft wood, listed pending possibilities for use
Fraké, Limbo	<i>Terminalia superba</i> Engl. & Diels.	taller than all others, very fast-growing in full sunlight, possibilities for creating pure stands, possibilities for short-rotation felling for cellulose production if seed-bearing trees are preserved to ensure natural regeneration

in shady undergrowth, and density is low or average in many cases. When they account for only a small proportion of trees in a stand and when trees with hard or very hard wood are dominant, then the environment is a primary or at least a virtually untouched forest. Conversely, when the former make up the majority of the stand and the latter are absent or in the minority, the environment is an old secondary forest. It is not unusual for primary forests to contain only a small number of species, but these are always shade-loving, usually have heavy seeds have become well established and reproduce on the spot in deep shade, thus preventing other species from developing amongst them. The most typical example is Macrolobium Dewevrei, a very abundant species in the Congo Basin where it is found in pure or almost pure stands. Other examples are the numerous species found in the middle and lower storeys and those found in humid and swampy ground.

When a sun-loving species is found in abundance in an apparently primary forest, this generally indicates that it originated in a secondary forest. This can be proved through studies of stand composition and latent regeneration. If a forest has an abundance of species like Mahogany, Limba, Iroko and Kapok trees, it is probably of secondary origin, which it is possible to confirm, with a few exceptions. This is particularly evident for Gaboon mahogany, a sun-loving species of the first order, which is a pioneer species in secondary forests but is also long-lived and persists in secondary forests that are so old that they take on the aspect of primary forests. We reported on the remarkable case of Gaboon mahogany in another research note and came to the conclusion that the very fortunate extension of this species into large tracts of Gabon's forests was certainly due to earlier clearing; the surprising fact is that these regions are now virtually uninhabited. This inescapably suggests that Gabon

was formerly much more densely populated than it is today. This conclusion may seem astonishing, but on second thoughts, colonials who are familiar with the speed with which village populations disappear in Gabon's forests, even today, will not find it so surprising.

The same is true in Côte d'Ivoire and in Cameroon, and also elsewhere whenever a forest is dominated by secondphase species of secondary forests. Thus, vast tracts of uninhabited forest that appear to be untouched, with their gigantic trees, shadowy undergrowth, enormous lianas and almost bare soil, were in fact cleared a long time ago, if we go by the conclusions drawn from the composition of their plant communities. These forests were formerly inhabited, as were Gabon's mahogany forests. Human settlement therefore probably began earlier and across wider areas in equatorial forests than is generally thought.

To return to the case of the umbrella tree, its seemingly miraculous regeneration in apparently primary forests is due to pre-existing dormant seeds in the humus layer, but where did these seeds come from? Animals, and especially birds, certainly disperse them over large areas, but the density of seedlings in some areas suggests a different but plausible hypothesis, which is that a stand of umbrella trees existed previously in the location occupied today by the supposedly primary forest, but that it disappeared as part of the normal evolution of secondary forests, leaving an abundance of seeds in the shadows to await the chance event of fresh forest clearing to trigger their germination.

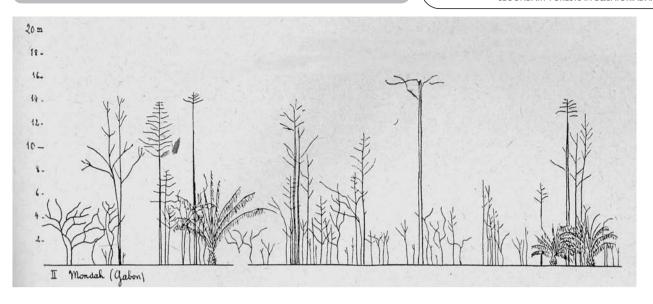
From the point of view of a forest's value, should these changes in its composition wrought by man in ages past be a cause for complaint? Clearly not, because in fact, it is the sun-loving species such as mahogany, iroko, African whitewood or limba that are most sought after, while we have no idea how to use the innumerable trees forming very hard timber that can be extracted from indisputably primary forests. But despite these happy outcomes of forest clearing, we should not unthinkingly cry "Long live the forester's axe!" nor yet entertain the fond hope that no regulatory obstacles should prevent clearing for crops. Because the anarchic freedom enjoyed by natives to cut down parcels of forest whenever they wish, notwithstanding the ultimate effect of encouraging the growth of certain useful species, also most certainly destroys existing stands in which useful trees, such as mahogany, are already in place, and subsequently, with a few blows of the axe or machete, destroys the trees that are already regenerating. It is not acceptable to allow old or young stands of valuable species to be massacred and vanish into a thin layer of ash and heavy clouds of smoke.

The lesson we should draw from these observations on the influence of human actions of the evolution of a forest is that it is possible to guide and hasten its evolution by applying sylvicultural techniques, to transform existing forests with few choice species into forests that are much richer. There is no lack of material with which to work: all these valuable trees and timber make up an economically and biologically varied resource with which foresters could create vast wealth for the future.

A. $\ensuremath{\mathsf{AUBREVILLE}}$, Inspector-General for Water and Forests in the Colonies.

The following pages contain the 12 "survey" pages annexed to Mr. Aubréville's study.

Photo 2. Forêt exploitée près d'Oumé, Côte d'Ivoire en 1957. Photograph A. Aubréville, 1957.


SURVEY Nº 1

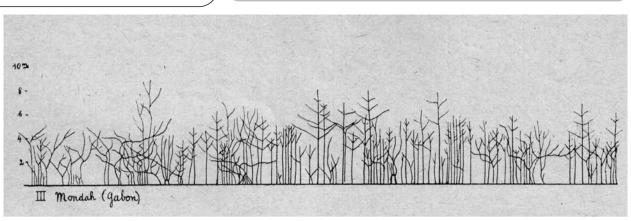
MONDAH FOREST (Gabon) 0.025 ha.

BUSH ABOUT 8 YEARS OF AGE, WITH EARLIER RESERVES OF GABOON MAHOGANY

Tree heights in n	netres	≤5	≤ 10	≤ 20	≤ 30	< 30	Totals
Okoumé	Aucoumea klaineana Pierre	-	4	1	2	1	8
Paras olier	Musanga cecropioides Tedlie	-	-	-	1	1	2
Esessang	Ricinodendron africanum Müll. Arg.	-	-	1	1	-	2
Kanguélê	Maesopsis eminii Engl.	-	-	-	1	-	1
Oka ha	Dichostemma glaucescens Pierre	-	-	2	-	-	2
Nsa	Maprounea membranacea Pax & K. Offm.	-	-	1	-	-	1
Ngourangouran	Oncoba glauca (P. Beauv.) Planch.	4	1	-	-	-	5
Engoung	-	2	1				3
lroko	Chlorophora excelsa		1				1
Tol	Ficus vogeliana (Miq.) Miq.		1				1
Enak	Macrolobium macrophyllum	4					4
Ebiara	Berlinia bracteosa	4					4
Ovala	Pentaclethra macrophylla	3					3
Ndoutnaireu	-	13					13
Pindja	Hylodendrwon gabunense Taub.	2					2
Miaminégouma	-	2					2
Ezelfou	Sterculia tragacantha Lindl.	1					1
Ofos	Haematostaphis Pierreana	1					1
Noumakoul	-	1					1
Eveus	Klainedoxa gabonensis	1					1
Evoumi	Coula edulis	1					1
		39	8	5	5	2	59

Volume: 6.3 stacked $m^3 + 3.9 m_3 \neq 12$ stacked m^3 , I. e. 480 stacked m^3 per hectare

SURVEY Nº 2


MONDAH FOREST (GABON) 0.025 ha.

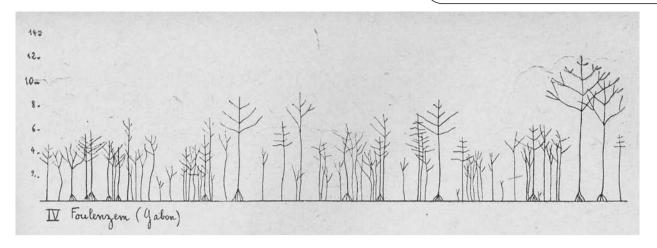
BUSH ABOUT 10 YEARS OF AGE, ON HUMID GROUND

Tree heights in m	etres	≤ 5	≤ 10	≤ 20	≥ 20	Totals
Esoma	Rauvolfia macrophylla			1		1
Atégué	Discoglypremna caloneura (Pax) Prain				1	1
Avome	Cleistopholis patens (Benth.) Engl. & Diels.	1	1	1		3
Ahinébé	Anthocleista nobilis G. Don			1		1
Ozouga	Sacoglottis gabonensis (Baill.) Urb.			1		1
Ossongo	Anthostema Aubryanum			1		1
Bilogbikélébé	Scotellia kamerounensis			1		1
Olonvogo	Fagara macrophylla (Oliv.) Engl.			1		1
Enak	Macrolobium macrophyllum	12	2			14
Ezelfou	Sterculia tragacantha Lindl.	1	2			3
Andok	Irvingia gabonensis		1			1
Eyen	Distemonanthus benthamianus Baill.		1			1
Eveus	Kainedoxa gabonensis	3	1			4
Padouk	Pterocarpus soyauxii		1			1
Pindja	Hylodendron gabunense Taub.	1	1			2
Heyio	Trichoscypha sp.	1	1			2
Ndoumaireu	-	1	1			2
Niové	Staudtia kamerunensis var. gabonensis (Warb.) Fouilloy	12				12
Mvouma	Xylopia quintasii Engl. & Diels.	5				5
Soro	Scyphocephalium mannii (Benth.) Warb.	3				3
Vakfine	Diospyros sp.	3				3
Nkabi	Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg.	2				2
Ngorangouran	Oncoba glauca (P. Beauv.) Planch.	1				1
Okess	Garcinia Mannii	2				2
Ilomba	Pyenanthus kombo	1				1
Ebiara	Berlinia bracteosa	1				1
Ake	Cola	1				1
Viass	Heisteria	1				1
Otounga	Anonacée	1				1
Nzolé	-	1				1
Enedok	-	1				1
African oil palm						
or macaw-fat	Elaeis guineensis	3				3
Unknown species	-	3				3
^		61	12	7	1	81

Volume: 3 stacked m³, *i. e.* 120 stacked m³ per hectare

BOIS ET FORÊTS DES TROPIQUES, 2015, N° 323 (1) SECONDARY FORESTS IN EQUATORIAL AFRICA

SURVEY Nº 3


MONDAH FOREST (GABON) 0.025 ha.

ANNEXES

2 YEAR-OLD BUSH

Tree heights in n	netres	≤2	≤4	≤6	> 6	Totals
Atsu	Harungana madagascariensis Lam. ex Poir.	1		2	5	8
Nouùmasas	Macaranga monandra		1	2	2	5
Seneu	Albizia gummifera (J. F. Gmel.) C. A. Sm.		1	1	1	3
Nkabi	Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg.	7	6	7	1	21
Ezelfou	Sterculia tragacantha Lindl.				1	1
Avome	Cleistopholis patens (Benth.) Engl. & Diels.			5		5
Medzimekouro	Psychotria venosa (Hiern) E.M.A. Petit		9	10		19
Okala	Xylopia aethiopica (Dunal) A. Rich.	4	7	6		17
Kanguélé	Maesopsis eminii Engl.			2		1
Okoumé	Aukoumea klaineana		1	3		4
Noumebiara	Berlinia			1		1
Essan	Dichaetanthera africana (Hook. F.) JacqFél.			2		2
Essessang	Ricinodendron africanum Müll. Arg.			2		2
Ngourangouran	Oncoba glauca (P. Beauv.) Planch.		8	4		12
Enak	Macrobolium macrophyllum	4	7			11
Nsa	Maprounea membracea		1	1		2
Boulésou	-			1		1
Ahinébé	Anthocleista nobilis G. Don		4			4
Atélem	Newbouldia laevis (P. Beauv.) Seem. ex Bureau		4			4
Assas	Bridelia micantha (Hochst.) Baill.		2			2
Ndoumaireu	-	6	3			9
Esoma	Rauvolfia macrophylla		1			1
Evegeu	Trema orientalis (L.) Blume		1			1
Onzabili	Antrocaryon klaineanum Pierre		1			1
Akaha	Dichostemma glaucescens Pierre		1			1
Soro	Scyphocephalium mannii (Benth.) Warb.		1			1
Eveus	Klainedoxa gabonensis	1				1
Ngaha	-	2				2
		25	59	48	10	142

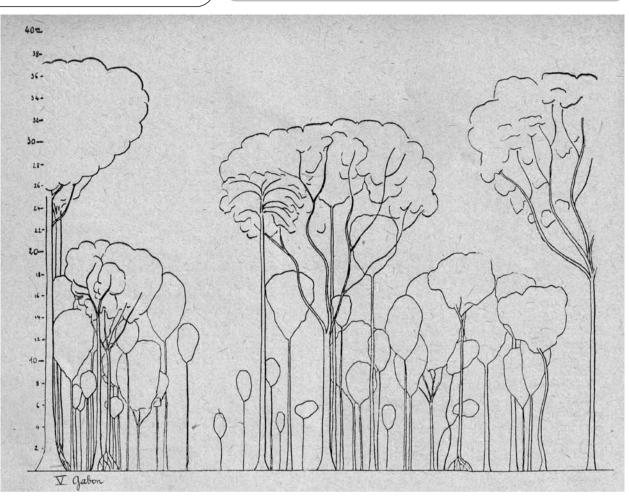
SURVEY Nº 4

POULENZEN REGION (GABON) 0.025 ha.

MUSANGA BUSH, 2.5 YEARS OF AGE

Tree heights in n	netres	≤ 4	≤6	≤8	≤ 10	> 10	Totals
Parasolier	Musanga cecropioides Tedlie		7	2	3	1	13
Kanguélé	Maesopsis eminii Engl.		2	2	1		5
Esoma	Rauvolfia macrophylla	4	4	2			10
Assas	Macaranga sp.		1	2			3
Tzilé	-		1	1			2
Okala	Xylopia aethiopica (Dunal) A. Rich.	1	1	1			3
Editoghe	-	3	3				6
Evegeu	Trema orientalis (L.) Blume		4				4
Nvimkoué	-	1	3				4
Eyoum	Dialium sp.	1	1				2
Medzimekouro	Psychotria venosa (Hiern) E.M.A. Petit	6	1				7
Okol	Ficus exasperata Vahl	1	4				5
Avome	Cleistopholis patens (Benth.) Engl. & Diels.		1				1
Olonvogo	Fagara macrophylla (Oliv.) Engl.		1				1
Ahinébé	Anthocleista nobilis G. Don	1					1
Toum	Piptadenia Africana	1					1
Eveus	Klainedoxa gabonensis	1					1
Padouk	Pterocarpus soyauxii	1					1
Aboudkoulo	-	2					2
		23	34	10	4	1	72

SURVEY Nº 5


KANGO REGION (GABON) 0.025 ha.

VERY OLD SECONDARY FOREST RESEMBLING PRIMARY FOREST

Tree heig	hts in metres	≤ 5	≤ 10	≤ 15	≤ 20	≤ 25	≤ 30	≤ 40	Totals
Alep	Desbordesia oblonga							1	1
Assié	Pachylobus buettneri (Engl.) H.J. Lam					1		1	2
Niové	Staudtia kamerunensis var. gabonensis (Warb.) Fouilloy.	2						1	3
Okoumé	Aucoumea klaineana Pierre						2		2
Soro	Scyphocephalium mannii (Benth.) Warb.						1		1
Eba	Pachylobus balsamifera			1	1	1			3

BOIS ET FORÊTS DES TROPIQUES, 2015, N° 323 (1) SECONDARY FORESTS IN EQUATORIAL AFRICA

38

SURVEY Nº 5 (suite)

KANGO REGION (GABON) 0.025 ha.

VERY OLD SECONDARY FOREST RESEMBLING PRIMARY FOREST

Tree heig	nts in metres	≤5	≤ 10	≤ 15	≤ 20	≤ 25	≤ 30	≤ 40	Totals
Owui	Hexalobus crispiflorus		2			1			3
Atom	Pachylobus sp.			3	3				6
Andok	Irvingia gabonensis			2	1				3
Padouk	Pterocarpus soyauxii		1		1				2
Otounga	-		2	3	1				6
Ekouné	Coelocaryon preussii Warb.				1				1
Ekoba	Stombiopsis Zenkeri		1		1				2
Vakfine	Diospyros sp.		1	1	1				3
Adzem	-	2		1					3
Akak	Duboscia macrocarpa			1					1
Ebame	Chrysophyllum lacourtianum		1	2					3
Engoung	-		1						1
Essoula	Plagiostyles Africana	1							1
Ekokoum	Barteria	1							1
Ngeneu	-	1							1
Etou	-	2							2
Kara	-	1							1
Andoung	-	1							1
Kese	Thomandersia laurifolia	4							4
		15	9	14	10	3	3	3	57

SURVEY Nº 6

CÔTE D'IVOIRE

BANCO FOREST (Series IV - Parcel 1 - 0.02 на).

Valley bottom - Old secondary forest with regenerating primary understorey

Tree heights	in metres	≤4	≤6	≤8	≤ 10	≤ 12	≤ 15	≤ 20	≤ 25	≤ 30	> 30	Totals
Parasolier	Musanga cecropioides R . Br.	1				1					2	4
Fromager	Ceiba pentandra (L.) Gaertn.										1	1
Poé	Stombosia pustulata								1			1
Tofé	Macaranga sp.					1		1				2
Adjouaba	Pachylobus deliciosa						1					1
Effeu	Hannoa klaineana Pierre ex Engl.					1						1
Piegba	Conopharyngia durissima	10	6	4	3							23
Pouo	Funtumia latifolia	1			1							2
Avodiré	Turreanthus africanus	1		1								2
Kkoi	Microdesmis puberula	22	2									24
Efi	Pleiocarpa mutica	1	1									2
Akéato	Cola gabonensis	12	1									13
Moué	Monodora myristica	3	1									4
Colatier	Cola nitida		1									1
Akédé	Antiaris welwitschii	1	1									2
Koto	Pterygota sp.		1									1
Azadau	Afzelia bella	1										1
Ouroviti	Isolana campanulata	1										1

SURVEY Nº 6 (suite)

40

BANCO FOREST (Series IV - Parcel 1 - 0.02 на).

Valley bottom - Old secondary forest with regenerating primary understorey

Tree heights in	n metres	≤ 4	≤6	≤8	≤ 10	≤12	≤15	≤ 20	≤ 25	≤ 30	> 30	Totals
Dabéma	Piptadenia Africana	1										1
Okoué	Baphia sp.	1										1
Akhoissi	Homalium Aylmeri	1										1
Doloko	Cola mirabilis	2										2
Azobé	Lophira procera	1										1
Sohoué	Holarrhena Africana	1										1
Assié blessou	-	1										1
Akaingo	Craserispermum gracile	1										1
Bodioa	Anopyxis gracile	1										1
Okoué	Raphia sp.	1										1
		67	14	5	4	3	1	1	1		3	99

Volume: 2.75 stacked $m^3 + 8.2 m^3 \neq 15$ stacked m^3 , *i. e.* 750 stacked m^3 per hectare

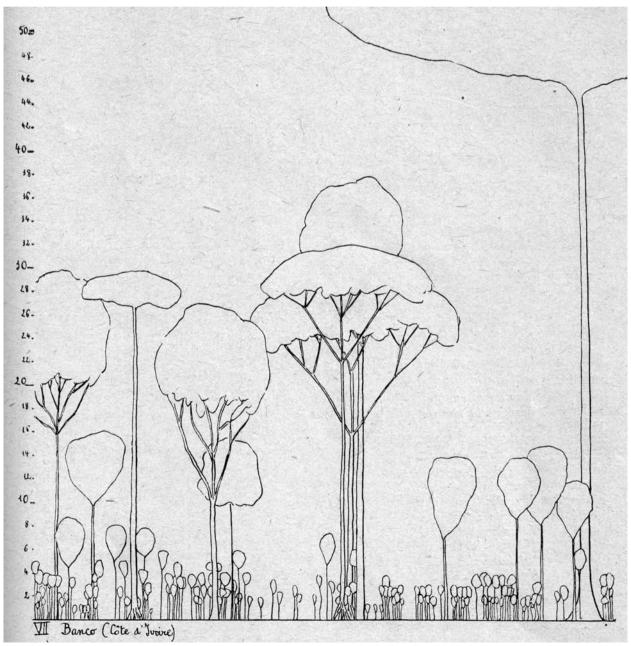
SURVEY Nº 7

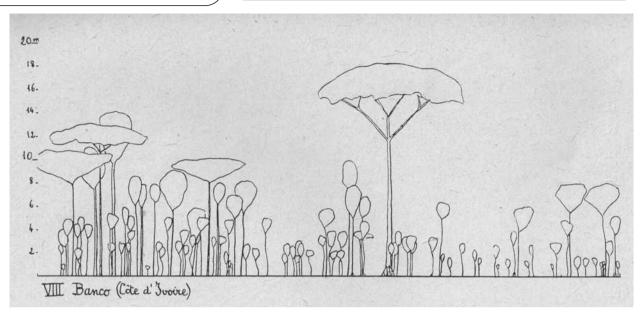
CÔTE D'IVOIRE

BANCO FOREST (0.02 HA - PARCEL 2).

Valley bottom - parcel parallel to Survey 6 and 10 metres distant. Old secondary forest with some primary forest reserves, regenerating primary understorey

Tree heigh	nts in metres	≤4	≤6	≤8	≤ 10	≤12	≤15	≤ 20	≤ 30	≤ 40	≤ 50	≤ 60	Totals
Dabéma	Piptadenia Africana	1										1	2
Parsolier	Musanga cecropioides												
	R. Br.		1							1	2		3
Kaka	Philodiscus bancoensis	1								1			2
Adjouaba	Pachylobus deliciosa						2		1				3
Tofé	Maracanga sp.								1				1
Colatier	Cola nitida								1				1
Abalé	Combretodendron africanum						1						1
Poé	Strombosia pustulata						1						1
Andofiti	Vitex micrantha					1							1
Piegba	Conopharyngia	21	1	2	1								25
Aribanda	Trichilia tessmannii Harms			1									1
Avodiré	Turreanthus africanus	11	2										13
Moué	Monodora myristica	6	1										7
Ouatéra	Allamblackia parviflora	1	1										2
Akohissi	Homalium alymeri		1										1
Séléma	Baphia sp.	1	1										2
Akéato	Cola gabonensis	30											30
Kokoi	Microdesmis puburela	20											20
Doloko	Cola mirabilis	4											4
Bossé	Guarea cedrata	5											5
Efi	Pleiocarpa mutica	7											7
Okoué	Baphia sp.	4											4
Banaye	Trichilia monadelpha												
	(Thonn.) J. J. de Wilde	2											2
Akédé	Antiaris Welwitschii	2											2
Baoué	Enantia polycarpa	2											2
Soamon	-	2											2
Ourovili	Isolana campanulata	1											1


Annexes

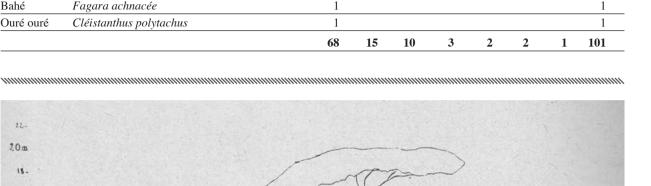

ANNEXES

A	э.
Z I	
_	

Effeu	Hannoa klaineana										
	Pierre ex Engl.	1									1
Afambéou	Dialum dinklagei	1									1
Dao	Trichosypha arborea A. Chev.	1									1
Tivi	Randia hispida	1									1
Sampou	Drypetes gilgiana	1									1
Losso	Ledermannia chrysochlamys	1									1
Wounian	Myrianthus arboreus P. Beauv.	1									1
Poupouia	Monosis conferta										
	(Benth.) C. Jeffrey	1									1
Akohissi	Homalium aylmeri	1									1
Elo	Xylopia villosa	1									1
Iroko	Milicia excelsa										
	(Welw.) C. C. Berg	1									1
		132	7	3	1	1	4	4	3	1	156

Volume: 4 stacked m³ + 14.8m³

SURVEY Nº 8


CÔTE D'IVOIRE

BANCO FOREST 0.02 HA

Plateau (Parcel 3) - Young secondary forest

Tree height	s in metres	≤4	≤6	≤8	≤ 10	≤12	≤ 15	≤ 20	Totals
Parasolier	Musanga cecropioides R . Br.							1	1
Tofé	Macaranga sp.	3	1				1		5
Framiré	Terminalia ivorensis						1		1
Bangbaye	Albizia gummifera (J. F. Gmel.) C. A. Sm.				1	1			2
Kaka	Philodiscus bancoensis	1				1			2
Oualélé	Pycanthus kombo		1		1				2
Piegba	Conopharyngia durissima	1	2	1	1				5
Poupuia	Vernonia conferta			3					3
Poré poré	Sterculia tragacantha Lindl.	1	1	1					3
Tchikué	Bridelia micrantha (Hochst.) Baill.	1		1					2
Alibkouo	Tylostemon Mannii	6		1					7
Réré	Macrolobium macrophyllum	5	1	1					7
Dao	Trichoscypha arborea A. Chev.			1					1
Abalé	Combrtodendron africanum			1					1
Okoué	Baphia sp.	10	3						13
Wouniam	Myrianthus arboreus P. Beauv.	1	2						3
Rikio	Uapaca guineensis	1	1						2
Akoré	Discoglypremna caloneura (Pax) Prain		1						1
Aplati	Gaertnera paniculata Benth.								1
Azobé	Lophira procera								1
Moué	Monodora myristica	2							2
Poé	Strombosia pustulata	2							2
Akédé	Antilaris welwitschii	2							2
Kokoi	Microdesmis puberula	5							5
Akossika	Scotellia kamerunensis	1							1
Dibétou	Lovoa triclisioides	6							6
Banaye	Trichilia monadelpha (Thonn.) J. J. de Wilde	2							2
Baoué	Enantia polycarpa	1							1

Annexes						SECC	NDARY FO	ORESTS IN	I EQUATOR	IAL AFRICA
Dabéma	Piptadenia Africana	1							1	_
Akéato	Cola gabonensis	5							5	_
Brobro	Anthocleista nobilis G. Don	1							1	_
Bodioa	Anopyxis ealaensis	1							1	_
Assié blessou	l -	1							1	
Tuibesso	Baphia sp.	1							1	
Félétou	-	3							3	
Colatier	Cola nitida	1							1	
Bahé	Fagara macrophylla (Oliv.) Engl.	1							1	
Bahé	Fagara achnacée	1							1	
Ouré ouré	Cléistanthus polytachus	1							1	
		68	15	10	3	2	2	1	101	

16. 14-12-10-8.. 6. Banco (Côte d' Toovre) IX

SURVEY Nº 9

ANNEXES

22-200 18-

CÔTE D'IVOIRE

BANCO FOREST (PLATEAU - PARCEL 3 - 0.02 HA)

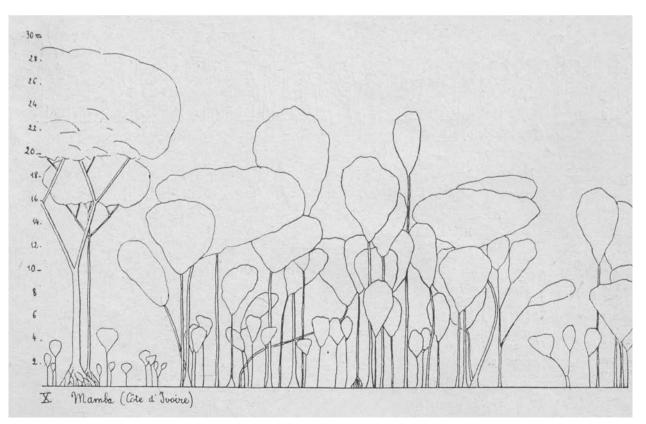
Secondary forest, young, species-poor, no distinct character

Tree heights	s in metres	≤4	≤6	≤8	≤ 10	≤12	≤15	≤ 20	Totals
Dabéma	Piptadenia Africana							1	1
Tchikoué	Bridelia micrantha (Hochst.) Baill.				1		1		2
Melegba	Berlinia acuminate				1		1		2
Kaka	Phialodiscus bancoensis	2	1	2	1				6
Atiokoué	Tylostemon heudelotii	7	1		1				8
Bangbaye	Trichilia monadelpha								
	(Thonn.) J. J. de Wilde	1		1					2
Okoué	Baphia sp.	14	3	1					18
Effeu	Hannoa klaineana Pierre ex Engl.		2						2
Dona	Carapa procera		1						1
Gbona	-		1						1

43

BOIS ET FORÊTS DES TROPIQUES, 2015, N° 323 (1)

SURVEY Nº 9 (suite)


Annexes CÔTE D'IVOIRE

BANCO FOREST (PLATEAU - PARCEL 3 - 0.02 HA)

Secondary forest, young, species-poor, no distinct character

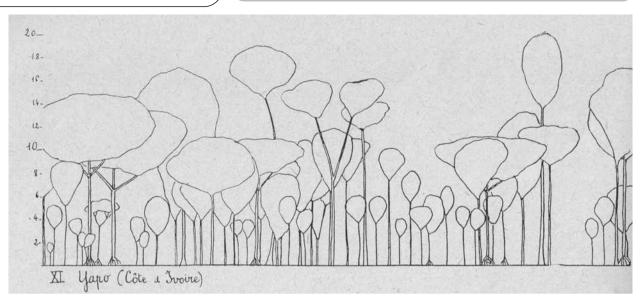
Tree heights	in metres	≤4	≤6	≤8	≤ 10	≤ 12	≤ 15	≤ 20	Totals
Kokoi	Microdesmis puberula	7	1						8
Piegba	Conopharyngia durissima		1						1
Poré poré	Sterculia tragacantha Lindl.		1						1
Bodia	Anophyxis ealaensis		1						1
Atroka	-		1						1
Tuibesso	Baphia sp.	1							1
Baouéfou	Polyalthia oliveri	2							2
Oklé	-	1							1
Bleu	Carpolobia lutea	1							1
Elo	<i>Xylopia</i> sp.	2							2
Gbagba	Dichapetalum flexuosum	2							2
Wouniogba	Maesobotrya sparsiflora	1							1
Réré	Macrolotium macrophyllum	3							3
Ga	Eriocoelum racemosum	1							1
Félétou	-	2							2
Akéato	Cola gabonensis	3							3
Kiokio	Glyphea lateriflora	1							1
Poé	Strombosia pustulata	1							1
Abalé	Combretodendron africanum	1							1
		53	14	4	4		2	1	78

Volume: 1.1 stacked m3, i. e. 55 stacked m3 per hectare

SURVEY Nº 10

CÔTE D'IVOIRE

45


MAMBA FOREST (км 65, Agboville Road) 0.02 на Old secondary forest

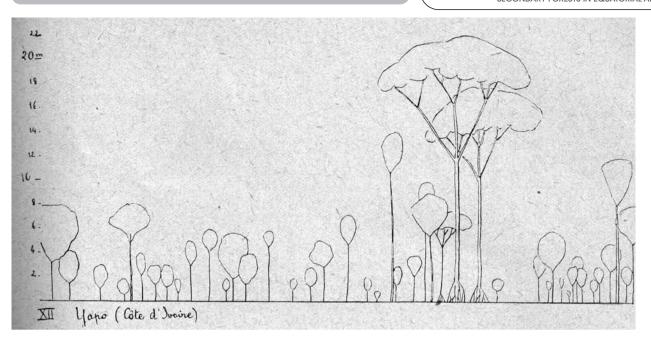
Tree heights in	metres	≤ 5	≤ 10	≤ 15	≤ 20	≤ 30	Totals
Parasolier	Musanga cecropioides R. Br.				2	1	3
Poé	Strombosia pustulata	2				1	3
Akossika	Scotellia chevalieri					1	1
Aninguiri red	Chrysophyllum beguei	1	3	2	4		10
Tofé	Macaranga sp.		1		2		3
Akoré	Dicoglypremna caloneura						1
Ouotéra	Allanblackia parviflora				1		1
Adjouaba	Pachylobus deliciosa		1	3			4
Moué	Monodora myristica		1	1			2
Banaye	Trichilia monadelpha						
	(Thonn.) J. J. de Wilde			1			1
Dona	Carapa procera	2	1	1			4
Okoué	Baphia nitida	2		1			3
Sanza minika	Dyospiros sanza minilka		1	1			2
Rikio	Uapaca guineensis			1			1
Lo	Parkia bicolor			1			1
Badi	Nauclea diderrichii						
	(De Wild. & T. Durand) Merr.	3	1				4
Gaigai	Napolenoa leonensis		1				1
Kaka	Philodiscus bancoensis	1	1				2
Ngavi	Diospyros heudelotii		1				1
Ouara	Cola maclaudii		1				1
Anloukéti	Pachypodanthium straudtii		1				1
Atiokouo	Tylostemon Mannii	1					1
Beu	Symphonia gabonensis	1					1
Attia	Coula edulis	1					1
Ouokouti	Randia genipaeflora	1					1
Abrabassa	Octhtocosmus africanus	1					1
Ndéchavi	Rauvolfia vomitoria	1					1
Aplati	Gaertnera paniculata Benth.	1					1
Fondé	Xylopia staudtii	1					1
		19	14	12	10	3	58

Volume: 8 stacked $m^3 + 3.34 m^3$ = about 13 stacked $m^3 i. e. 55$ stacked m^3 per hectare

BOIS ET FORÊTS DES TROPIQUES, 2015, N° 323 (1) SECONDARY FORESTS IN EQUATORIAL AFRICA

46

SURVEY Nº 11


CÔTE D'IVOIRE

YAPO FOREST (Parcel 1) 0.02 HA

Young secondary forest

Tree heights in	metres	≤4	≤6	≤8	≤ 10	≤ 12	≤ 15	≤ 20	Totals
Tofé	Macaranga sp.					1		1	2
Ouombé	Harungana madagascariensis								
	Lam. ex Poir.							1	1
Poé	Strombosia pustulata			1	1			1	3
Oya	Mareya spicata				1			1	2
Tohikuébi	Bridelia aubrevillei						1		1
Mottikoro	Drypetes Afzelii		1	2			1		4
Kékémi	Diospyros gabonensis						1		1
Akoré	Discoglypremna caloneura								
	(Pax) Prain		4	1		2			7
Parasolier	Musanga cecropioides								
	R . Br.					2			2
Sanza minika	Dyospiros gabonensis		1	1		1			3
Brobro	Anthocleista nobilis G. Don				1	1			2
Kainkain	Aporrhiza talbotii					1			1
Djilika	Spondiathus preussii				1				1
Aguis	Omphalocarpum anocentrux				1				1
Wounian	Myrianthus arboreus P. Beauv.			1					1
Rikio	Uapaca guineensis			1	1				2
Adjouaba	Pachylobus deliciosa			1					1
Tiama	Entandophragma angolense			1					1
Losso	Ledermannia chrysochlamys		1						1
Okoué	Baphia nitida		2						2
Boborou	Irvingia gabonensis		1						1
Kondroti	Bombax breviscupe		1						1
Okoué	Baphia bancoensis	1							1
Gaigai	Napoleona leonensis	1							1
Kaka	Phialodiscus bancoensis	1							1
Lo	Parkia bicolor	2							2
		5	11	9	6	8	3	5	47

Volume: 3.5 stacked m³ i. e. 175 stacked m³ per hectare

SURVEY Nº 12

CÔTE D'IVOIRE

YAPO FOREST (Parcel 2) 0.02 HA

Very poor secondary forest

Tree heighs in metres		≤ 4	≤6	≤8	≤ 10	≤ 12	≤ 15	≤ 20	Totals
Parasolier	Musanga cecropioides R . Br.			1				2	3
Poé	Strombosia pustulata	1	1				1		3
Effeu	Hannoa klaineana Pierre ex Engl.					1			1
Sobou	Cleistopholis patens (Benth.)								
	Engl. & Diels.				1				1
Kamaïa	Rubiacée				1				1
Loloti	Lannea welwitschii (Hiern) Engl.			1					1
Bodioa	Anopyxis Ealaensis			1					1
Dahé	Fagara macrophylla (Oliv.) Engl.		2	1					3
Okoué	Baphia bancoensis	2	1						3
Moué	Monodora myristica		1						1
Colatier	Cola nitida	1	1						2
Wounian	Myrianthus arboreus P. Beauv.	1	1						2
Acajou	Khaya ivorensis A. Chev.	1							1
Gaigai	Napoleana leonensis	2	1						3
Sanza Minika	Diospyros gabonensis	1							1
Daocou	Bosquiea phoberos	2							2
Mélegba	Berlinia acuminate	1							1
Oyia	Mareya spicata	1							1
Ngavi	Diospyros heudelotii	1							1
Bahia	Mytragine ciliata	1							1
Banayé	Trichilia monadelpha								
	(Thonn.) J. J. de Wilde	1							1
Kokoi	Microdesmis puberula	1							1
Onotéra	Allanblackia parviflora	1							1
Aoudogba	Cuviera nigrescens	1							1
Koué	Baphia nitida	4							4
Ehoué	Rinorea elliottii	1							1
Ndéchavi	Rauvolfia vomitoria Afzel.	1							1
		25	8	4	2	1	1	2	43

Volume: 3.1 stacked $m^3 + 0.06 m^3 \neq 4$ stacked $m^3 i. e. 200$ stacked m^3 per hectare

Corrected name of genus and species or botanic synonymy	Botanic name used by the author and transcribed in the original article
(Mbigou range around 1000 m asl)	(Mbigou range around 1000 m asl)
Albizia gummifera (J. F. Gmel.) C. A. Sm.	Albizia gummifera
Albizia zygia (DC.) J. F. Macbr.	Albizia zygia
Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg.	Alchornea cordifolia
Allophylus africanus P. Beauv.	Allophyllus africanus
Anthocleista nobilis G. Don	Anthocleista nobilis
Antrocaryon klaineanum Pierre	Antrocaryon Klaineanum
Aucoumea klaineana Pierre	Aucoumea klaineana
Bridelia micrantha (Hochst.) Baill. (Hochst.) Baill.	Bridelia micantha
Caloncoba welwitschii (Oliv.) Gilg	Coloncoba welwitschii
Calpocalyx brevibracteatus Harms	Calpocalyx brevibracteatus
Calpocalyx dinklagei Harms	Calpocalyx aff. Dinklagei
<i>Calpocalyx klainei</i> Pierre ex Harms	Calpocalyx Klainei
Canarium schweinfurthii Engl.	Canarium schweinfurtii
Casearia Jacq.	Casearia
Ceiba pentandra (L.) Gaertn.	Ceiba pentandra
Chrysolbalanus ellipticus	Chrysolbalanus ellipticus
Cleistopholis patens (Benth.) Engl. & Diels	Cleistopholis patens
Cnestis ferruginea DC.	Cnestis ferruginea
Coelocaryon preussii Warb.	Caelocaryon Klainei
Cordia platythyrsa Baker	Cordia platythyrsa
Croton oligandrus Pierre ex Hutch.	Croton oligandrum
Daniella spp.	Daniella spp.
Dichaetanthera africana (Hook. F.) JacqFél.	Skersia africana
Dichostemma glaucescens Pierre	Dichostemma glaucescens
Diospyros sp.	Diospyros
Discoglypremna caloneura (Pax) Prain	Discoglypremna caloneura
Distemonanthus benthamianus Baill.	Distemonanthus banthamianus
Erythrina milbraedii Harms	Erythrina altissima
Eugenia sp.	Eugenia
Fagara macrophylla (Oliv.) Engl.	Fagara macrophylla
Ficus exasperata Vahl	Ficus exasperata
Ficus mucuso Welw. ex Ficalho	Ficus mucuso
Ficus sur Forssk.	Ficus capensis

49	
----	--

Ficus vogeliana (Miq.) Miq.	Ficus vogeliana
Gaertnera paniculata Benth.	Gaertnera paniculata
Hannoa klaineana Pierre ex Engl.	Hannoa klaineana
Harrisonia abyssinica Oliv.	Harrisonia occidentalis
Harungana madagascariensis Lam. ex Poir.	Harongana madagascariensis
Holarrhena floribunda (G. Don) T. Durand & Schinz	Holarrhena africana
Homalium letestui Pellegr.	Homalium dolichophyllum
Hylodendron gabunense Taub.	Hylodendron gabonense
Hymenocardia ulmoides Oliv.	Hymenocardia ulmoides
Khaya ivorensis A. Chev.	Khaya ivorensis
Lannea welwitschii (Hiern) Engl.	Lannea welwitschii
Macaranga barteri Müll. Arg.	Macaranga barteri
Macaranga barteri Müll. Arg., M. spinosa Müll. Arg., M. hurifolia Beille	Macaranga bartyeri, spinosa, huraefolia
Maesopsis eminii Engl.	Maesopsis Eminii
Mallotus oppositifolius (Geiseler) Müll. Arg.	Mallotus oppositifolius
Maprounea membranacea Pax & K. Offm.	Maprounea mambranacea
Milicia excelsa (Welw.) C. C. Berg	Chlorophora excelsa
Milleria L.	Milleria versicolor Laurentii
Monosis conferta (Benth.) C. Jeffrey	Vernonia conferta
Musanga cecropioides R . Br.	Musanga Smithii
Musanga cecropioides Tedlie	Musanga Smithii
Myrianthus arboreus P. Beauv.	Myrianthus arboreus
Nauclea diderrichii (De Wild. & T. Durand) Merr.	Sarcocephalus diderrichii,
Newbouldia laevis (P. Beauv.) Seem. ex Bureau	Newbouldia laevis
Oncoba glauca (P. Beauv.) Planch.	Caloncoba glauca
Pachylobus buettneri (Engl.) H.J. Lam	Pachylobus buttneri
Pentaclethra eetveldeanna De Wild. & T. Durand	Pentaclethra eetveldeanna
Pentaclethra macrophylla Benth.	Pentaclethra macrophylla
Phyllanthus discoideus (Baill.) Müll. Arg.	Phyllanthus discoideus
Pierreodendron kerstingii (Engl.) Little	Mannia simarubopsis
Platycalyx N. E. Br.	Platucalys Verderysti
Pleioceras barteri Baill.	Pleioceras barteri
Polyscias letestui Norman	Polvscias Le Testui
Premna hispida Benth.	Premna hispida
Pseudospondias microcarpa (A. Rich.) Engl.	Pseudospondias microcarpa

Psychotria articulate (Hiern) E.M.A. Petit	Grumilea articulata
Psychotria venosa (Hiern) E.M.A. Petit	Grumilea venosa
Psydrax subcordata (DC.) Bridson var. subcordata	Canthium glabriflorum
Pycnanthus angolensis (Welw.) Warb.	Pycnanthus kombo
Randia acuminate (G. Don) Benth. (also in primary forest undergrowth, especially humid or swampy ground)	Randia acuminata
Rauvolfia macrophylla	Rauwolfia macrophylla
Rauvolfia vomitoria Afzel.	Rauwolfia vomitoria
Ricinodendron africanum Müll. Arg.	Ricinodendron africanum
Sacoglottis gabonensis (Baill.) Urb.	Saccoglottis gabonensis
Sclerocrton cornutus (Pax) Kruijt & Roebers	Saplum cornutum
Scyphocephalium mannii (Benth.) Warb.	Scyphocephalium Ochocoa
Spathodea campanulata P. Beauv.	Spathodea campanulata
Spondias mombin L.	Spondias monbin
Staudtia kamerunensis var. gabonensis (Warb.) Fouilloy	Staudita gabonensis
Sterculia tragacantha Lindl.	Sterculia tragacantha
Strychnos pungens Soler., S. variabilis De Wild.	Strynchos pungens, variabilis
Terminalia ivorensis A. Chev.	Terminalia ivorensis
Terminalia superba Engl. & Diels.	Terminalia superba
Tetrapleura tetraptera (Schumach.) Taub.	Tetrapleura tetraptera
Tetrorchidium didymostemon (Baill.) Pax & K. Hoff.	Tetrorchidium didymostemon
Treculia africana Decne.	Treculia africana
Trema orientalis (L.) Blume	Trema guineensis
Trichilia monadelpha (Thonn.) J. J. de Wilde	Trichilia Heudelotii
Trichilia tessmannii Harms	Trichilia lanata
Trichoscypha sp.	Tricoscypha
Triplochiton scleroxylon K. Schum.	Triplochiton scleroxylon
Vernonia brazzavillensis Aubrév. Ex Compère	Vernonia brazzavilliensis
Vismia guinensis (L.) Choisy	Vismia leonensis
Vitex grandifolia Gürke	Vitex grandifolia
<i>Xylopia aethiopica</i> (Dunal) A. Rich.	Xylopia aethiopica
<i>Xylopia quintasii</i> Engl. & Diels.	Xylopia quintasii
Zanthoxylum parvifoliolum (A. Chev. Ex Keay) W.D. Hawth.	Fagara parvifolium